NOTATION

r, the radius of the capillary; L, evaporation heat; A, atomic weight; T, temperature; R, gas constant;
¢, coordinate of the evaporation front; «, speed of sound; II, porosity; A, thermal conductivity; &*(y) = (2/-7)

0
[ exp(—z%dz; v =Vv(0). The indices 1 and 2 pertain, respectively, to the parameters of the dry zone and of

g
the initial body.
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APPLICATION OF THE TIKHONOV METHOD TO SOLVE
THE INVERSE HEAT-CONDUCTION PROBLEM FOR A
MELTING PLATE WITH MELT ENTRAINMENT

V. V. Lebedev UDC 526.24.02

An algorithm is proposed for the solution of the inverse heat-conduction problem for a
melting plate with instantaneous removal of the liquid phase.

The inverse heat-conduction problem for a domain (plate) with moving boundary reduces to finding the
law of motion of the melting solid body and two heat fluxes on the plate boundaries on the basis of the known
temperature change in two interior points. The method of solving such a problem, proposed in one of the
author's papers [1], is extended in this paper to the case when the method of successive intervals is inappli-
cable, i.e., when either the depth of the points x, and x, does not correspond to the magnitude of the time in-
terval during which the temperatures are measured (x}/21% > aAt/1% or (I —x,)?/21% > aA1/1?% or the mea-
surement errors are large [t(x;, 1) —t(x,, 7)I. Underlying the method proposed is the more general approach
to the solution of incorrect problems of mathematical physics proposed by Academician A. N. Tikhonov [2, 3].

Let us consider the temperature field in a plate heated by a heat flux of density q;(r), where the flux den-
sity g,(7) emerges through the opposite face of the plate,

Prior to the beginning of melting (r < 7,,) this temperature field is subject to the heat-conduction equa~

tion
ot ot
A P —_—cp—Ec—, 0<xg!l Oty (1)
with the boundary conditions
22— @)
ax |x=0
ot
— 2 —67 = — q,(1) 3
and the initial condition =t
t(x, 0) = @(x). )
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The solution of (1) with the conditions (2)-(4) can be represented in the form

t(x, r)—cpfc?(x, L De®E + {G(x. 0, T—m)qs(n)dn

— [ G &, r—m) g, (e, (5)
0

where G(x, ¢, 7) is Green's function

G(x & 1) = 1. I_{EXP[ (’c——E)z] +exp[ (x_;_'g)z]

o 2V mar dav dar
Cnt —x 8 _@nitx—Ep
+ 2 [exp [ } P [ 4at ]
+exp ["‘@‘—;_’“; + 5)2] +exp [T RIS &)2]] g (6)

a =M/ cp is the thermal diffusivity of the plate.

If the behavior of the temperature with time is measured at two points of the plate x = x; and x =x,
with the inevitable experimental error, then the heat fluxes q; (T) and q,(r) can be determined from equa-
tions of the type (5) by using the measured values t (x4, 7) and t Xy, T).

An integral operator transform acting on the heat flux q(r) in a symmetric integral operator is used
in the Tikhonov method. Hence, we reduce the system of equations (5) for x =x; and x = X, to a form per-
mitting execution of a similar transform. For this purpose, we perform a Laplace transform of the sys-
tem (5) for the points x =x; and x =Xx,, we extract the members qi(p) and qz(p) by multiplying both sides
of the equation by cpAvp/a , and we invert the Laplace transforms

g SN[ l@en—1)i—Axp
Vaak — ) ‘[ex"( 4a(r—~n))

(o d@n DI AT,
()]

o [ __dn B
2 j V:‘La(-c___n)a L {t(Xp ) [[(Qn—{— 11— x,]

_l@nt D I—xp _l@n i+ »1)]
Xexp( pPrE— )—}—[(2n—!—1)l—|—x2]exp( —————————4(1(1_1])

n-=0

— () {l(zn L )i—xem ( —fent D)

da(t—m)
1 2
_ﬂ’_xl_i(_g_)__ \ [ . 2n+ )I—Ax—Ep -~
2 5‘/""—‘{;; eXp( 4ar )

— I~ Ax—E?
—{—exp(—[(2n+l)l Ax+§]z)_exp(_[(2n+) - Ax J)

4at 4av

_exp<_ [(2n+1)l+Ax+§]Z)ld§>

4at

e e® O, (_ [(2n+1)l—xz—xl+az)
o ) Vmar nzg[exp dav
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_@n+ DA ERY _lent+ i+ Ax—§2
+exp( ypm ) &xp( yp= ]
— exp (__ [(Zn_ll— l)l:_xz_{—xl_glz )]dg, (7)
at
Sf_ﬂ_ N [exp (_ [(2n + 1)1 — Axp )
5 V no(t—m) o 4a(t—m)
_l@n+ D1+ Axp -
—exp( p—— )}dn =
w (1 R @nl + x)?
=21 t(xp M| @0l + 1, —
2 5 Vaa(t—mn)® g{ G n)[( " Y)exP( 4a(1,'—'q)>

- [(2n +2) 1 — x,] exp ( __@n42)l—xp )]

4a(t—n)
—{(xp M) [(in + x,) exp (—« ————in(:fi::) +l(2n +2)1
t o0
_ _ @A I—xP\ )y [ (- a3
x,] exp ( pS— )]} n oV e fcp(é) 2; exp py
+ exp (_ [(2n 5~ 2) I—AX——‘EIZ) —exp (_ (2nl + Ax-l-E)z)
' 4at 4 4at
—exp (_ l(2’l+2)i; Ax —§? )} &
. op i = . 2nl - xp + x, — &R
s ) 0O [ ( )
| @n - 2) I —Ax—EPN _ (2nl + Ax - EP
e ( 4at ) exp ( 4at )
— exp (— (2 + 2)‘: — A ) ] @, 8)
at

where Ax =x,—x,.

Substituting the temperatures t (X4, 7) and t (X2, 7), "perturbed™ by errors into the system (7), (8)
instead of t(x,, 7) and t(x,, 7) as well as the approximate distribution cp? (x) in place of the exact value, we
obtain a system of approximate integral equations whose solution can be executed by the Tikhonov method
under the conditions

9 0y — 9% _ o) _
S0 = 0=0.

After the beginning of the melting, the plate thickness which was initially equal to 7, diminishes
continuously because of entrainment of the melt by the incoming gas stream. Hence, the temperature
field in the plate from the beginning of the melting 7 = 7, will already not satisfy the expression (5). This
field should satisfy the heat-conduction equation

2t (x, T) 1 ot (x, 1)
—_— = ———, U E ST A 9
O 2 “ov S(<Cx<g (9

with the boundary conditions

ot ds
—A— = —pl —,
0x lxogyy 70 —e dr (10)
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ot

—Ah— =— ) 11
9% Lo (1) (11)
tis(x), 1l =Ty, 12)
s(t,) =0. (13)

Here L is the specific heat of melting and s(r) is the law of motion for the melting body surface.

As is known, the problem (9)-(13) is nonlinear and its analytic solution in general form is impossible.
The approximate numerical solution of both the direct and inverse problems can be obtained as follows [1,
3-5].

We mentally continue the melting plate to its initial dimensions /. The solution of the heat-conduc-
tion equation (1), continued into the domain [0, s(r)] will not satisfy conditions (2) and (3) since part of the
energy brought to a plate of thickness ! by the heat flux would be absorbed by the substance in the section
[0, s(r)] while the heat flux going to the boundary s(r) would have a density less than q,(r).

Let us introduce an effective thermal flux density Q,(7):

Q)= ¢: (%) + gy (), 14)
where q, £ (7) is some fictitious flux, "the heat brought which is absorbed in the domain [0, s(7)]."

By using the effective flux Q,(t), the témperature field of the plate can be represented in thc form
(5), (7), and (8) after the beginning of melting with melt entrainment, where instead of q,(r) we should sub-
stitute Q,(r), where

_[a® for T<Tp (15)
Qv = i
ql_(T) +qy(r) for  T>Tm
On the basis of the temperature values E(xl, T) and E(xz, 1), where x; > s(r), the integral equations (7) and
(8) can be solved for the fluxes Q () and g,(r) by the method of regularization.
Let us use (5) with condition (12) to determine the law of motion of the melting surface:
. .

Tom=cp [ GIs(2)E 1 9@+ Gls(x), 0, T—mQ(dn — [Cls(D), L v—nlgs(nydn. (16)
0 0 0

The Green's functions in (16) are determined by iterating (6)

oG PG | (s, — sy
GIst® , E 11=2=Gls,, & 7 ___. s —sy) + ) wf an
- & b & 71+ 0x "=SN( LA Ox% |xmsy 2
20 26 (5420 — 2"
() B D=6, 5 D+ —— s, — S0 + =g ' AU (18)
G(SN+1 c T)ﬂ (SN,l g )+ ax xzs%)l_l( N+1 N+l) axz x_s%)ll 9

etc., where sy =s(ry), s(0) = 0, Ty = NAT are measured from the time of the beginning of melting Tpy,,
AT is the spacing of the difference mesh which is used to determine the heat fluxes Q(7) and q, ().

The true heat flux with density q,(7), which enters the plate through the melting surface, is determined
from the Stefan condition (10) in which the rate of displacement of the melting surface is replaced by the

difference analog )

Sw1— SN * 96
ql(TN-H) = pL —'KT_—“— ij "5;' (SN+1 ’ gv T)(P(E)dg
0
T

T

0
—| % (syerr O T=m @ en 2 |
0

0

e L 19)

X
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This algorithm to solve the inverse problem is simpler than that proposed in (7] which uses the thermal
potential, Extraction of the most awkward operations for determining the heat fluxes through the boundary of
the initial domain (the true q, and effective Q) from iteratively finding the boundary location is achieved there-
in. Not used therein is the linear-fractional transformation of the variable size of the domain into a con-
stant, which results in nonuniformity of the mesh,

However, the method proposed relies on an integral form of the solution of the heat-conduction equation
(with Green's functions) and cannot be carried over to the nonlinear case. In the nonlinear case [A = Af), cp =
c(t)o (t)] the algorithm proposed by Alifanov in later papers [8] should be used.

NOTATION

t(x, 7), true temperature at the point x of the plate at the time r; f(xi, 7), temperature measured at the
point x; (i =1, 2) at the time 7; A, ¢, p, thermal conductivity, specific heat, and density of the plate material;
{, plate thickness; x;, x,, interior points of the plate; g; (r), heat flux density through the plate surface; G(x,
¢, T, m), Green's function; T, melting point; T, time of the beginning of plate melting; L, specific heat of
melting; s(7), law of motion of the melted plate surface; q; £ Q 'z densities of the "fictitious" and "effective"
fluxes (auxiliary quantities); A7, difference mesh spacing; N, spacing number.
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DIRECT AND INVERSE HEAT-CONDUCTION
PROBLEMS IN A MORE COMPLETE FORMULATION

N. V. Shumakov and A. A. Rostovtseva UDC 536.2

Direct and inverse heat-conduction problems are formulated and solved for the asymmetric
cooling of an infinite plate with nonuniformly distributed and asynchronously acting sources
in the case of an inhomogeneous initial distribution.

In electrical engineering, it is important to ensure that powerful electrical motors and generators will
conform to the specified thermal operating conditions. In electronics, the construction and use of semi-
conductor devices ranging from powerful diodes to microcircuits also involves the optimization of temperature
conditions of operation.

From a thermophysical point of view, this problem requires the development of experimental and theoret-
ical methods of investigating the temperature in the cooling of a solid with internal sources. In electrical
machines the appearance of heat sources is due to Joule~heat losses, remagnetization and eddy currents in
magnetic and conducting parts of the machine, friction in the rotating parts, and losses in the circulation of the
coolant gas. In semiconductors, heat liberation is due to Joule losses and the Peltier effect. Despite their
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